CHAPITRE 14

Thermodynamique

des processus irréversibles

14.1 Equation de diffusion de la chaleur
Yorok®  Montrer que le profil de température (12.56),
C x? D x?
T (z,t) = TN P oz
0= Fiess o0 () = o0 (-30)

ou T est la température et x la coordonnée spatiale, est une solution de I’équa-
tion de diffusion de la chaleur (12.47).

14.2 Equation de la chaleur avec une source de chaleur

Yok L'équation de diffusion de la chaleur a été établie au para-
graphe 12.4.2, en ’absence de terme de source lié au transport des électrons de
conduction. On considere que le potentiel chimique des électrons est négligeable
par rapport au potentiel électrostatique, c’est-a-dire que p. < ge .

1) Montrer que la densité de puissance dissipée s’écrit,
Ps = — \& Ju

2) A Paide de la densité de puissance dissipée (12.129),

.2

2 . Jq

ps=kV'T—735,-VT+—

o

en déduire que pour un conducteur électriquement neutre traversé par une
densité de courant électrique conductif j , '’équation de la chaleur devient,

T .
HT=AV’T— —j, -
Ce Ce O
ou A est la diffusivité thermique, o est la conductivité électrique, ¢ est le
coefficient Seebeck, 7 est le coefficient de Thomson du conducteur électrique
et c. est la densité de capacité thermique des électrons de conduction.
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14.3 Générateur Peltier

Yorrdr . Un générateur Peletier est constitué de deux éléments thermoélec-
triques reliés en série (fig. 14.1). Le coté gauche du générateur est maintenu
& une température T et le coté droit, & une température 7. Le courant
électrique I généré par le générateur Peltier circule a travers les matériaux
thermoélectriques dénotés 1 et 2. La plaque chauffée & température T relie
électriquement les deux matériaux, mais elle n’est pas électriquement accessible
a I'utilisateur. Son potentiel électrique est V+. Les autres extrémités des ma-
tériaux thermoélectriques sont du coté froid, a température T~ . Ils sont reliés
aux bornes électriques du dispositif. Une résistance de charge Ry est reliée a ces
bornes. La tension V est la différence de potentiel électrique entre les bornes.
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Fig. 14.1 Un générateur Peltier a une charge représentée par la résistance Ry reliée aux
bornes. V est la tension entre les bornes. Le pont électrique & V1 n’est pas accessible &
l'utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T et T~ sont les cotés chaud et froid du dispositif.

On analyse le fonctionnement de ce générateur a I’aide des équations de trans-
port de la charge électrique et de la chaleur,
jq12—0'161VT1—01V301 et lez_FﬁVTl"_TlEqul
jq2:70'262VT270'2Vg02 et jQ2:7H2VT2+T2€2jq2

Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section
d’aire A, ce qui peut s’écrire comme,

d
d:/ dr - 7 A:/dS-'F
0 S

ol 7 est un vecteur unitaire orienté dans le sens des aiguilles d’une montre
le long de la densité de courant électrique j,, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orientés dans la méme direction. La
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différence de température entre le c6té chaud et le coté froid s’écrit,
d d
AT:T+—T_:/ dr-Vle/ dr - (= VT3)
0 0

De maniere similaire, les différences de potentiel électrique A @1 et A @9 entre
les cotés chaud et froid s’écrivent,

d
A¢1:V+:/ dr -V ¢
0

d
Apy=VT— V:/ dr - (= V ¢2)
0

La conservation de la charge électrique implique que les densités de courant
électrique sont les mémes pour chaque matériau, c’est-a-dire j,, = j,,. Le
courant électrique I traversant les matériaux 1 et 2 est donné par l'intégrale
des densités de courant électrique j,, et j,, sur la surface A de la section,

I:/qu.dS:/jq2~dS
S S

D’apres la relation (11.122), les courants de chaleur I, et I, sont les intégrales
des densités de courant de chaleur jq, et jq,, traversant les matériaux 1 et 2,
sur la surface A de la section,

IQI:/ (_jQ1)'dS Isz/jQz'dS
S S

Déterminer :
1) le courant de chaleur I&? appliqué sur le coté chaud du dispositif lorsque
aucun courant électrique ne le traverse ;

2) la résistance électrique R des deux matériaux thermoélectriques lorsque
les températures sont égales, c’est-a-dire T+ = T, et qu’aucun courant
électrique ne traverse la résistance Ry, c’est-a-dire lorsque Ry = oco. Dans
ce cas, un courant électrique traverse les matériaux thermoélectriques sans
traverser la résistance ;

3) le courant électrique I en termes de la différence de température AT ;

4) le rendement thermodynamique du générateur défini comme,

Ry I?
=

olt ici, I est le courant chaleur du coté chaud a température T lorsque le
courant électrique traverse le dispositif. Montrer que la résistance de charge

optimale s’écrit,
Ro=R+\14+¢
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N N . . 7 1
otl ¢ est un parameétre sans dimension donné par”’,

T+ (51 — 62)2

- (k1 + K2) (1—1—1)

01 02

14.4 Jonction thermoélectrique

Yo On considere un barreau constitué de deux métaux différents A et B
d’épaisseur d en contact thermique. Les métaux sont définis par leur conducti-
vité électrique o4 ou op, leur conductivité thermique k4 ou kg, et leur coeffi-
cient Seebeck €4 ou ep. Ces propriétés peuvent toutes étre considérées comme
indépendantes de la température. L’extrémité du métal A est en contact avec
un bain thermique a haute température et ’extrémité du métal B est en contact
avec un bain thermique a basse température, ce qui impose une différence de
température AT a travers le barreau. Une densité de courant électrique j,
constante traverse le barreau. On mesure une différence de potentiel électro-
statique Ay entre les extrémités du barreau (fig. 14.2).
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Fig. 14.2 Un courant électrique traverse un barreau formé de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température a travers chaque métal. L’origine de I’axe Or est située a la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité de
courant électrique j, et la densité de courant de chaleur j sont conservées
a la jonction entre les métaux A et B, c’est-a-dire que j, = j,, = J,, et
Jo =Jg, = Jqy- Le courant électrique I qui traverse les métaux A et B est
l'intégrale des densités de courant j,, et j,, sur la surface A de la section,

I:/qu-dS:/qu-dS
S S

H. J. Goldsmid, Introduction to Thermoelectricity, Springer, 2010.
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ou le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique j,. Le courant de chaleur I exercé sur les métaux A et B
est I'intégrale des densités de courant de chaleur jg, et jg, sur la surface A
de la section,

IQ:/jQA-dS:/jQBdS
S S

Les différences de température ATy et ATg, et les différences de potentiel
électrostatique A w4 et A pp a travers les métaux A et B sont données par,

0 d
ATA:/ dr - (= VTa) et ATB:/ dr - (—VTpg)

—d 0
0 d

Apg= dr-(—=Va) et App = dr - (—Vp)
—d 0

ol le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique j, et de la densité de courant de chaleur j,. La différence
de température AT et la différence de potentiel électrostatique Ay a travers
tout le barreau satisfont,

AT = AT, + ATg et Ap =Aps + App

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

0 d
d:/ dr-f':/ dr -7 et A:/dS-f'
—d 0 S

ou 7 est le vecteur unitaire orienté de la gauche vers la droite dans le méme
sens que la densité de courant électrique j, et la densité de courant de chaleur

Jg-

1)

Exprimer les équations de transport de la charge électrique et de la cha-
leur (12.117) pour les métaux A et B a la jonction entre les métaux en
termes des forces généralisées V14, VI, Vpa, V pp et de la tempéra-
ture T4 p evaluée a la jonction entre les métaux.

Si ’épaisseur d des métaux est suffisamment petite, les gradients peuvent
étre considérés comme indépendants de la position. Dans ce cas, intégrer
I’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

Dans ce méme cas, intégrer I’équation de transport de la chaleur entre les
extrémités des métaux A et B.

En déduire les expressions de AT et ATg en termes de I, AT et des
coefficients phénoménologiques.
En déduire les expressions de Ay et App en termes de I, AT et des
coefficients phénoménologiques.

Déterminer I'expression de Ap en termes de Tap, I, AT et des coefficients
phénoménologiques.



